
ficient; C, radiation coefficient; Fo = aT, Fourier number (dimensionless time) for plate 
of unit thickness; (i - ~), relative initial temperature; ~j, Di, ~i, Di, B, k, b, co- 
efficients defined in text; ~, heat transfer coefficient; BI, Blot number; Bip, radiative 
Biotinumber for plate of unit thickness. 
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EXISTENCE OF SOLITARY WAVES IN A PRESTRESSED NONLINEAR 

THERMOELASTIC MEDIUM WITH DRY FRICTION 

M. D. Martynenko and Fam Shi Vin UDC 539.3 

The one-dimensional problem of the solitary wave propagation in a prestressed 
nonlinear thermoelastic medium with dry friction is analyzed on the basis of a 
geometrically nonlinear model. An equation is derived for calculating the free 
energy at which solitary waves can be generated in such a medium. It is shown 
that the wave velocity depends on the initial state of the medium and on the dry 
friction law. 

i. BASIC EQUATIONS OF THE NONLINEAR THEORY OF THERMOELASTICITY 

IN THE PRESENCE OF DRY FRICTION FORCES 

Let a body obey the laws of the nonlinear theory of thermoelasticity in the presence 
of dry friction; the analysis of the wave processes in the one-dimensional problem in La- 
grangian variables is then reduced to the solution of the following equations [1-4]: a) 
the equation of motion 

_ _  ~u _L a [(1 ~ ~ o  '~] --P0 sgnvfQvl) 
Ox ' " O f  2 ' 

o r  

a 2 8% 8 
-- [(I + 8)~ ~] := po-- ~ [sgn vf (IvI)I, (1) 

Ox 2 c)t ~ Ox 

where c = 8u/Sx, v = ~u/St, f is a continuously differentiable function on the interval 
(0; ~] (~ > 0), f'(v), f(v) > 0 for v E (0; ~], and f(0) = 0; the condition f(0) = 0 ensures 
the differentiability of the function sign v f(Ivl) (v e [-~; ~]); b) the heat-conduction 
equation, assuming that 
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IT- -ToI /To~ 1 or [O[/To~l. 

When condition (2) is satisfied, the heat-conduction equation has the form 

ds = k* 0 [ O0 1 l + ~f ([vl) ,v [. 
at 0-7- ax (158) 

Her O = T - T O , k = i/p070, k ~ = kk, and k is a constant. 

The relation between the strains and the displacement has the form 

(2 

(~ 

The governing equations are 

where F is the free energy. 

1 (4) 
8 = 8 @  8 2 . 

2 

~ ,  _ OF, S - -  __OF , F - -  F(e ,O) ,  (5) 
Oe dO 

2. 

Let o*, e, 
e o, e0, So, and 8 c be the same quantities at the initial time; and let o*, e, 
be their perturbations. We then have 

a * - a * ~  *, e = e o + e ,  ~ = ~ o + e ,  S = S o + S ,  O = O o + O .  
We shall assume that 

So = const, Oo = O, 80 = const, 0.o = const. 

From Eqs.  ( 1 ) ,  ( 3 ) - ( 7 )  we o b t a i n  t h e  e q u a t i o n s  

0 ~ 02s O 
Ox---( [(! + ~ + 8o) (r* + ~*%] = too at-T, + ~ [sgn vf (Ivl)], 

dS k, a [ O 0 1  ] 
~ T  = ax  Yx (1 + ~ +%)  + ~{ (Ivl)Ivl, 

BASIC EQUATIONS OF THE NONLINEAR THEORY OF THERMOELASTICITY 

FOR A PRESTRESSED MEDIUM WITH DRY FRICTION 

~, S, and 0 be the characteristics of the medium at a given time; let o *~ 
e, S and 0 

(6 )  

(7) 

(8) 

9) 

I 
e + eo = (8 + eo) + - (8 + ~o) ~, e = Ox/Ox, 

2 
i0) 

OF OF 
o* +~*o - , S + So - - - ,  F = F (e +eo, 0). 

O (e + eo) O0 
11 

3. ONE-SOLITON WAVES IN A PRESTRESSED NONLINEAR 

THERMOELASTIC MEDIUM WITH DRY FRICTION 

We consider the problem of choosing the function F in such a way that the system (8)- 
(Ii) will have a solution in the form of solitary strain waves. We must therefore augment 
Eqs. (8)-(11) with the following equations, which characterize the soliton property [5, 
6]: 

O 2 ~ e - - [ n ~ i U l e  = 0 (12 
Oz ~ 

o r  

63U OU 6U OU + = O, 
O--t- - -  Oz Oz 3 ( 13 

Oe = _ _  40~e + 6U Oe + 3e O U _ _  qe, (14 
Ot 5z 3 8z Oz 
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where q and n are constants, 
initial state: 

z=(1 +%)x. 

We seek  a s o l u t i o n  o f  Eqs.  ( 8 ) - ( 1 1 ) ,  ( 1 2 ) - ( 1 4 )  in  t h e  form 

U = U (e), ae/Oz = g (e), 

~* = o *  (e) ,  S = S (e),  0 = 0 (e) .  

Under t h e  a s s u m p t i o n : ( 1 6 )  i t  i s  r e a d i l y  p r o v e d  t h a t  

Oe/Ot = h (e), h (e) -- _+ cg (e), 

e = e(~), $ = z + _ c t ,  

where  c i s  a p o s i t i v e  c o n s t a n t  ( t h e  s o l i t a r y  wave v e l o c i t y ) .  

We then have 

and z denotes the coordinates of a point of the medium in the 

(is) 

e = e (B), ~ = z - -  ct. 

Of,  = - - c d f *  Of, _ d r ,  
a t  d ~ '  Oz d~ '  

where f, represents any of the functions e, ~, o*, 

It follows from Eqs. (12), (14), and (20) that 

de dU 
(2U + c - -  4n 2) ~ = e d-T + qe . 

From Eqs.  (13)  and (20)  we o b t a i n  

dU 
-- (2U 3 + cU 2 + AU + B) 1/2, 

d~ 

where A and B are constants of integration. 

If U = 0, we infer from Eqs. (12), (20), and (21) that 

q ~ = n  2(c -4n2) 2. 
Assuming that 

( 2 U + e  -@z 2 ) ~ 0  

from Eqs. (21) and (32) we have 

(2U + c -- 4n 2) exp (qIa) = -- 4R2e ~, 

where R is a constant of integration, and 

2dU 
13 

f 

J (2U + c - -  4tz ~) (2U3+cU2+AU + B)U2 

is a Weierstrass elliptic integral of the third kind. 

We now consider the case 

q@O,  A-~  B = O .  

It follows from Eqs. (23)-(27) that 

t~ 

( 2 n - - y )  g + - V ~ -  v~7 

where 
y2 = 2U + c, [g] ~ 2n. 

Le t  
c : n  2, n < g ~ 2 n ;  

(16) 

(17) 

(18) 

We shall assume that 

(19)  

O, S, g, h, v, or u. 

(20) 

(21)  

(22)  

(23)  

(24)  

(25)  

(26)  

(27)  

(28) 

(29)  

(3o) 
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we then obtain the following expression from Eqs. (28) and (30): 

On the other hand, from Eqs. 

(2~,--y)( y+n ') 
e = 2 ~  g - - n  " 

(22) and (27) we o b t a i n  

(31) 

y = n c t h [ + n ( p - - - ~ ) ] ,  

�9 where p is a positive constant of integration. 

It follows from Eq. (32) that in order to have n < y ~ 2n, it is necessary that 

(32) 

_/ 1 O - ~ . ~ % p - -  In3. (33) 
/1 

The constants of integration R and p are evaluated from the initial conditions ~e/St = ha, 
e = $ at x = O, t = O. We note that p - (i/n)in3 > 0 for sufficiently large values of ~. 
From Eq. (31) we obtain 

Consequently, e(y) 

d e _  1 (34) 
dg 4R g--- n , 

is a monotonically decreasing function, and 

e = O  at 

O<e~<ff ,  (35)  

y =  2t$, e = ~  at  g = n c t h ( 4 n p l .  (36) 

The following expression is deduced from Eqs. (31), (32), (34) and the relation g(e) = 
(de/dy)(dy/d~): 

n -i/~@n)~@8n--~[]/(e@n)2@8n~_l_(~_i. 3n)] []/-(e@n)2@8n~@(e@n)]_i, (37) g(e) 2R 

e =  2Re. 

Let us assume that s > 0 ~0 -> O; it then follows from Eq. (i0) that 

s + so---- ]/1 + 2(e + eo)-- 1. 

From Eqs. (10) ,  ( 15 ) ,  and (20) we o b t a i n  

v = - ( c s ) / ( l  + So). 

On t h e  b a s i s  o f  gqs .  (38) and (39) we have the  r e l a t i o n  
t 

v=c ( lq -2eo ) - 5 - ( 1  - - ] / ' l + 2 e  ) ~ 0 .  
Let 

(38) 

(39)  

(4o) 

eo dt 
(1+8o) ~*o = 9oa%o-- rn~ - 

o g (t) 
i ~(T(t) dr, 

(1 + %) 8 -~(t) 
(41) 

_~ do (o) 
So  = - -  klg (0) [ 1 + 2%] ~ de 

(42) 

where 

~i = (1 + 2eo) k*c -~, 9o =9o(1 + 2eo)-i, 

~ t )  = [* (t - -  eo), f* (t) = [ lcV1 -t- 2t --  cl, 

(0 = g ( t -  eo). 

(43) 

(44) 
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From Eqs. (8) ,  (9) ,  (15), (18), (38), and (40)-(44) we obtain 

- 1 m dt (y* + (7*O 9o c~ 
U1 +2  (e-6eo) ]/1 -}-2 (e-6eo) g(t) 

e" eo 
_ �9 1 ! , - f ( t )  d t ,  (45) 

l/1%- 2eo ] / ' ]+  2 (e-6eo} g(t) 

i f *  (t) S Jr- S o -- klg(e) dO ko (]/-i-6 2t--l) dr, (46) 
]/1 + 2 ( e + e o )  de " o g(t) 

where k 2 = k/~l + 2e0, 0 g e 0 g 1/2, m is a constant of integration, m ~ 0, and the function 
g is given by Eq. (37). From Eqs. (ii), (45), and (46) we have 

OF - 1 __ m dt 
O (e-~eo) o=v(e,e.) = 9~ 1 ]/1 -+- 2 (e -[- eo) -V'I + 2 (e -6 eo) if(t) 

(47) 
_ 1 e+ o f(!k dr, 

]/1 -+- 2 (e -6 eo) g (t) 

OF klg (e) dy ~ f* (t) 
O0 o=~(~,~o) = ]/1 +2(e-6eo) de -6 ko j ( ] / l+2 t - -  1)dr. -- " 0 ~ (48) 

We consider the following problem: Given the function f, find a function F such that 
the system (47), (48) will have a solution. We seek F in the form 

F = f l ( e + e o ) - - ? ( e - 6 e o ) 0 - -  z 02 , 
2 (49) 

where ~ and < are constants, and fl is an unknown function. 

Substituting Eq. (49) into Eqs, (47) and (48), we obtain the equations 

e+~o 1 m dt 
fl = ?g-6-9o cz 1-- ]/~i -62(e-6eo) ]/1 -62(e-6eo) -g(t) 

e@eo 
1 [ f(t) dr. (50) 

1 + V Y T ~ o  Y 1 + 2 (e + eo) ~ (t) �9 

V (e -6 eo) + • = 
e 

klg (e) dg k2 ~ [* (t) 
-I/1-62(e-6eo) de o - - ~ ( ] / l + 2 t - - 1 ) d t .  (51) 

The following equation is deduced from Eq. (51): 

dy _ / 7  (e) y -6 F (e). 
de 

(52) 

Here 

/7(0 : (-- x l /1  + 2(e -6 eo))/klg(e), 

f* (t) f (e) = (--k2 V'I -6 2 (e + eo) ! - - ~  (V1 -62t - -  1) dt - -  

- - ?  (e -6 eo)-[/1 -6 2 (e -6 eo))/kag (e). 

Equation (52) has the solution 

t 

b'=exp ( i  H(t )d t )Sexp  ( - -~ H  ('0d'v)F(t)dt, 
0 0 0 

(53) 

(54) 

(55) 

118 



which satisfies the conditions (42) and y(0) = 0. 

It follows from Eqs. (50) and (55) that 

[1 (e § eo) : po cz (e + eo) --- p~c2 In l / 1  § 2 (e -}- eo) - -  m • 

where 

7 ~ i -  
e +~o d'~ dt 1 d'~ 

• ] /1+2"c  o g(t) l / l §  ]/11§ o 

- - Y  o ~ E(T)dT - - ~ o  E( t )g( t )  ~ --~ oeo E(t)~(t) fog(S) (VI +2S--2eo--1)tin , 
(56) 

Thus, if the function f is given, the function F is determined from Eq. (49), in which the 
function fl is calculated according to Eq. (56). The stress o* and the entropy S are deter- 
mined from Eqs. (ii), (49), and (56), in which the function 8 is expressed by Eq. (55). 
The dependence of the wave velocity on the initial state and on the dry friction law is 
given by Eq. (41). 

NOTATION 

T, absolute temperature of the medium at a given time t; To, value of T at initial 
time to; S, entropy of the medium; x, Lagrangian coordinates of a point of the medium; P0, 
material density of the medium in the natural state; o*, x-component of the generalized 
stress tensor; u, displacement of a point of the medium along the x-axis; v, velocity of 
a point of the medium in the x-direction; e, strain of the medium along the x-axis. 
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